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J. Phys. A: Math. Gen. 14 (1981) 3125-3141. Printed in Great Britain 

The polynomial spectral problem of arbitrary order: A 
general form of the integrable equations and Backlund 
transformations 

B G Konopelchenko 
Institute of Nuclear Physics, 630090, Novosibirsk-90, USSR 

Received 2 June 1980, in final form 6 January 1981 

Abstract. The generalisation of the AKNS method to the matrix polynomial spectral 
problem of arbitrary order is given. Both the general form of the integrable partial 
differential equations and their Backlund transformations are described. 

1. Introduction 

The inverse spectral transform (IST) method allows a comprehensive study of a great 
number of various partial differential equations (see e.g. Scott eta1 1973, Bullough and 
Caudrey 1980, Zakharov et a1 1980). One of the main problems of the IST method is 
that of the description of the differential equations which are integrable by this method. 

All the partial differential equations to which the IST method is applicable are 
grouped into classes of equations which are integrable by the same linear spectral 
problem. A simple and convenient description of the class of equations integrable by 
the linear (in spectral parameter) spectral problem of the second order was presented by 
AKNS (Ablowitz et a1 1974). This class of equations is characterised by the ( m  - 1) 
arbitrary functions ( m  is the number of independent variables) and by a certain 
integro-differential operator (Ablowitz et a1 1974, Calogero and Degasperis 1976). 
The analogous result was obtained for the class of equations which are associated with 
the matrix stationary Schrodinger equation (Calogero and Degasperis 1977). The 
AKNS method has been extended to the general matrix linear spectral problem of 
arbitrary order (Newel1 1978, 1979, Miodek 1978, Kulish 1979, Konopelchenko 
1980a, b, c). The second-order linear spectral problem, quadratic in spectral 
parameter, was considered by Gerdjikov et a1 (1980). Within the framework of this 
approach the wide classes of Backlund transformations (BT'S) which play a significant 
role in the study of nonlinear differential equations are also found (Calogero and 
Degasperis 1976, 1977, Dodd and Bullough 1977, Konopelchenko 1980a, c, d, Gerd- 
jikov et a1 1980). 

In the present paper we generalise the AKNS method to the general polynomial 
matrix spectral problem of arbitrary order 

where A is the spectral parameter, P'"'(x, t )  are matrices of order N, n is an arbitrary 
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3126 B G Konopelchenko 

number, and x and t are independent variables (coordinate and time). The applicability 
of the IST method to polynomial spectral problems was discussed by Zakharov (1980). 

We describe a general form of the differential equations integrable by (1.1) and the 
general form of the Backlund transformations for these equations. The universal 
nonlinear transformation group, which contains the group of Backlund transformations 
and the integrable equations themselves, is constructed. Infinite series of the integrals 
of motion are calculated. As an example the linear ( n  = 1) and quadratic ( n  = 2) 
bundles (1.1) of arbitrary order N are considered. The infinite class of the integrable 
equations connected to the quadratic bundle contains multicomponent and matrix 
generalisations of the derivative and combined nonlinear Schrodinger equations. The 
equivalence of the polynomial spectral problem (1.1), as well as the general spectral 
problem, rational in the spectral parameter A,  to the degenerate spectral problem, 
linear in A, is also pointed out. 

The paper is arranged as follows. In 9 2 the infinite-dimensional group of nonlinear 
transformations connected with the spectral problem (1.1) is constructed. In § 3 it is 
shown that this group contains the integrable equations and Backlund transformations. 
Two examples-linear and quadratic bundles-are considered in 984 and 5 .  The 
equivalence of (1.1) to the degenerate spectral problem, linear in A, is discussed in § 6. 

2. Nonlinear transformations connected with problem (1.1) 

2.1. The transition matrix S and its transformation 

We assume that 

P("'(x, t )  --+A'"' (a  = 1 , .  . . , n ) ,  
1x:-co 

where A'"' are constant matrices, which commute with each other; [A"', A'p'] = 0, 
(a,  p = 1, . . . , n ) .  In other words we assume that all A'"' (cy = 1, . . . , n )  belong to a 
certain Cartan subalgebra go(Aj of the full matrix algebra gl(N, c). For properties of 
Cartan subalgebras see Bourbaki (1972). In particular, all Cartan subalgebras of 
gl(N, C) are commutative and they have the dimension N. Let us denote a basis for the 
Cartan subalgebra as H(A)t  ( i  = 1, , . . , N ) .  Then there exists a decomposition 
of gl(N, C) into the direct sum gl(N, C) = gO(A)@gF(A), where &(A) = 

{g, g E gl(N, C), [g, A] = O}. For an arbitrary matrix CD of order N we obtain a 
decomposition @ = + @ F ( A )  where @O(Aj is a projection of CD onto gO(A) and @ F ( A )  is 
a projection of CD onto @(A). In particular P$,& +PP) ! ) .  SO our assumption 
means that 

i.e. 

For simplicity we will also assume that P $ l )  5 A'"' (cy = 1, . . . , n) .  
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By virtue of this assumption for solution $(x ,  t, A )  of (1.1) we have: 

Let us introduce in the usual way (see e.g. Zakharov et a1 1980) the fundamental matrix 
solutions F i  and F -  with asymptotics 

F--E 
x+- -m 

F+- E, 
x + + m  

and the transition matrix 

S(A, t ) :  F+(x ,  t, A )  = F-(x ,  t, A ) S ( A ,  t ) .  

The system of the linear equations (1.1) gives a mapping P(x ,  t )  + +(x, t, A )  + S(A, t ) .  
Let P and P‘ be two ‘potentials’ in (1.1) and $ and $’ two corresponding solutions of 
(1.1). It isn’t difficult to show that (for N = 2 see Dodd and Bullough, 1977) 

m $‘-$=-$I dy+-’(P’-P)$’. 
X 

Putting $ = Ft and proceeding to the limit x + --CO we get 
+oo 

dx(F+)-’(P’- P)(F+)’. 

The formula (2.1) connecting the variation of the ‘potentials’ P(a)  with the variation 
of the transition matrix S is a basis for the further discussion?. 

The mapping Pca)(x ,  t )  -+ S(A, t )  given by (1.1) exhibits a correspondence between 
the transformations Pea) + F”” on the manifold of the ‘potentials’ { P ( a ) ( ~ ,  t ) }  and 
S(A, t )  -+ S’(A, t )  on the set of transition matrices {S(A, t ) }  which is given by 

Let us now consider only those transformations T for which 

T 
S(h,  t)-+S’(A, t )  = B-’(A, t )S(A,  t)C(A, t )  (2.3) 

where B(A, t )  = Bo(A,(A, t )  E &,(A) and C(A, t )  = CO(&, t )  E &(A). So we are restricted 
by those transformations P -+ P‘ for which the transition matrix S transforms in a simple 
linear manner (2.3). The assumption (2.3) is the generalisation of the main idea behind 
the IST method which consists in the mapping of the nonlinear evolution law of the 
potential P due to the nonlinear differential equation onto the linear evolution law 
(easily integrable) of the transition matrix S.  

The transformations (2.3) are defined by matrices B(A, t )  and C(A, t ) .  The main 
advantage of the generalised AKNS method consists of the construction in the explicit 

(1979). 
t For the linear (in A )  spectral problem see Konopelchenko (1980a-c) and, in the infinitesimal form, Shabat 
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form of the transformation P + P' which corresponds to the transformation S + S' of 
type (2.3) (for N = 2, n = 1, = 0, A'" = 0, and A(') is a diagonal matrix (see Dodd 
and Bullough 1977, 1979); for n = 1, P:iAA) = 0, A(') = 0, arbitrary semisimple A") and 
arbitrary N (see Konopelchenko, 1980a, b, c). 

Let us do this for the general polynomial bundle (1.1). Rewriting (2.3) in the form 
S ' -  S = (U-B)S'- S(1- C) and comparing with (2.1) we get 

-m 

(S-'(U- B)S')F(A' = - dx((F+)-l(P'- P)(F+)')F(A'. (2.4) I_, 
Then by virtue of the relations F-E,  (F+)'-E (we assume limlxl+m P(")= 

limjx/+W P"") = A'"'), [B, E ]  = 0 and EF(A) = 0, the following equality holds 

(s-'(Q - B ) s ' ) F ( A )  

x - + a  X'+W 

a i m  

- -  - d x z  ((F+)-'(U- B)(F+)')F(A) 

+ W  

dx{(F')- '[P(7]-B)-(U-B)Pf](F+)'},(A). 

Combining (2.4) and (2.5) we get 
+CO 

dx((F+)-'(BP'- PB)(F+)')F(A, = 0. I_, 
Rewriting equation (2.6) in components and designating 

we obtain 

((BP'- PB),  p A ) )  = 0 

(2.5) 

(2.6) 

(2.7) 

2.2. The A operators 

The relation (2.9) contains the product A"Bi(A, t )  4 F ( A ) ( x ,  t, A )  which is given locally (in 
each point h of the bundle (1.1)). The spectral problem (1.1) allows the possibility of 

+ + F ( A )  
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transforming this local (in A )  product into a global one which is determined for the 
whole bundle. 

To do this let us obtain the equation for 4 (x, t, A ) .  From the definition of 
++ df 
4 = (F+)'@(F+)-' and (1.1) we have 

++ 

++ 

From (2.10) it follows that 

(2.11) 

(2.12) 
++ 

- 4 $ k ) ( ~  )P~=(A)(Y ) ) o w  ( i ,  p = 1, . . . , N ) .  

++ F ( A )  Since F'- E = exp(Ci,o A a A ( a ) ~ )  we have ( 4 (x=+m))O(A)  = 0. Then substitut- 

ing (2.12) into (2.10) and taking the F ( A )  component of (2.10) gives 
x++m 

a=O 4=0  J x  

++ F ( A )  Thus the quantity 4 F ( A )  satisfies the matrix integro-differential equation (2.13) 
which is a polynomial in A. Equation (2.13) can be rewritten in compact form 

(2.14) 

where Q(y )  are matrices with operator elements. The explicit form of Q(y) in the terms 
Pea) and P'(a) can be easily obtained from equations (2.13) and (2.14). 
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By means of the generalised Bezout theorem (see e.g. Gantmakher 1967) equation 
(2.14) can be represented as follows 

Q ( A )  fi ( A - A ( p ) ) T g i 2 ; = 0  
p = l  

where the operators A(,,) are 'roots' of the operator polynomial T ( A ) :  

f(4,)) = 0 ( p  = 1 , .  . . , M ;  M G 2 n ) .  

(2.15) 

The equivalence of right and left division (Gantmakher 1967) leads to the com- 
mutativity of the factors A -A(,,) in the product IIp (A -A(,,)). In view of this property, 
the solutions of equation (2.15) can be represented in the form (assuming the non- 
degeneracy of the operator Q(A)):  

(2.16) 
p = l  

where 

ff 

So 4 C:$F'cA) is the eigenfunction of the operator A(,,) and A is an eigenvalue. 
From (2.17) follows that for any entire function f ( A )  

(2.18) + + F ( A )  f ( A )  :\${A) = f ( A ( p ) )  4 ( p ) F ( A ) .  

2.3. The transformations of the potentials 

Let us now return to equation (2.9). In view of (2.16) and (2.18), for any entire B,(A, t ) ,  
equation (2.9) is equivalent to the following 

2 2 f ((H(A)ip"a)-p'a)H(A)i) ,  B[(A(p)> t)(A(p))a 4 :\${A)>= 0.  
M N  ++ 

(2.19) 
p = l  [ = I  a = O  

Further, equation (2.19) is equivalent to 

M N  ++ 2 ( 2 f (A&))aBi(A&)s t)(H(A),P'(")-p(a)H(A)i) ,  4 :\$)(A)) = 0 
p = l  r = l a = O  

(2.20) 

where A&) are the operators adjoint to A(p) with respect to the bilinear form 
df (x, (CI>F(A) = ( X F ( A ) ,  (CIF(A)) .  

The equality (2.20) holds if the following system of equations is satisfied 
n N  

2 2 (A&JaBi(A&), ~ ) ( H ( A ) ~ ~ ' ( ~ ) - P ( ~ ) H ( A ) ~ )  = 0 ( p  = 1, .  . . , M ) .  (2.21) 

Thus we find that the transformation P(a)  -+ P"") which corresponds to the trans- 
formation S + S '  of type (2.3) are of the form (2.21) where B,(A, t )  are arbitrary 
functions entire on A.  Let us point out that if there exists some relationship between A;) 
then the functions B,(A, t )  ( i  = 1, . , . , N) must satisfy the certain conditions in order 
that there may be no inconsistency in the system of equations (2.21) ( p  = 1 , .  . . , M ) .  

a = O  i = 1  
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We see that the reason why we are restricted by the transformations S -+ S' of type 
(2.3) is because it is possible to convert these transformations into the form containing 
PCCI) and Pr(a) only (transformations (2.21)). 

The transformation law (2.3) of the transition matrix S leads to a simple trans- 
formation law of the matrix of the scattering data R(A, t )  = &,,,(A, t)(SOcA,(A))- ' .  It is 
easy to see that under transformation (2.3) 

df 

R(A, ~ ) + R ' ( A ,  t )  =B- ' (A ,  t)R(A, t)B(A, t ) .  

3. General form of the integrable equations, Backlund transformations and 
integrals of motion 

3. I ,  The integrable equations 

The infinite-dimensional group of the transformations (2.21), (2.3) is a basis for the 
analysis of the nonlinear equations connected with (1.1) and their properties. 

This group contains the transformations of different types. Let us consider the 
one-parameter subgroup of transformations given by the matrix 

r '  N 

B = exp( -i  ds CLi(A, s)) * H ( A ) i  
i = l  

(3.1) 

and C = B. It is not difficult to show that this transformation is a displacement in time t :  

f' N 

s (A ,  t )  -+ S'(A, t )  = exp( i I, CA(A, s) ds H,,)~). 
i = l  

(3.2) 
l' N 

S(h ,  t )  exp( -i If ds CLi(A, s ) H ( ~ ; i )  = S(A, t ' ) .  
i = l  

Correspondingly in the terms of P(a)(x ,  t )  this transformation P'"'(x, t )  -+ PCa)(x,  t ' )  is of 
the form 

where in the operator A&) one must put Pr(a)(x ,  t )  = P(a)(x ,  s ) .  At N = 2, n = 1 this type 
of relationship was found by Calogero (1976). The relation (3.3) defines the evolution 
in time of the potentials P(O'(x, t )  -+ P ( a ' ( ~ ,  t ' ) ,  The different evolution laws 
correspond to the different functions ai(& r )  ( i  = 1 , .  . . , N). 

Let us consider the infinitesimal displacement t -+ t' = t + E ,  E +. 0. In this case 

P(x ,  t ' )  = P(x ,  t )  + &(aP/at),  

Bi(A, s) = 1 - i&CLi(A, t ) .  
(3.4) 

Substituting (3.4) into (3.3) and taking into account only terms of the first order in F we 
obtain 
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where L;Pj = A&)(P '=  P). Correspondingly for the transition matrix: 
df 

Thus as the infinitesimal form of the transformations (3.3) we obtain the system 
of partial differential (in general integro-differential) equations (3.5). The system of 
relations (3.3) which does not contain the derivatives dP'"'/dt is the 'integrated' form 
of the system of differential equations (3.5) and solves, but inexplicitly, the Cauchy 
problem for it. 

The partial differential equations (3.5) are just the equations integrable by the IST 

method with the help of the polynomial spectral problem (1.1). For the applicability of 
the IST method in this case see Zakharov (1980). 

A broader class (than (3.5)) of the integrable equations appears if P(a' (as in the case 
N = 2, n = 1 considered by Calogero and Degasperis (1976)) depends on a few 
variables t l ,  . . . , t, of time type. Examining the t l ,  . . . , t, infinitesimal displacements 
we obtain from (3.3) 

wheref,(h, t l ,  . . . , t,) (e  = 1 , .  . . , m )  and R,(A, t l ,  . . . , t,) ( i  = 1 , .  . . , N 
functions entire on A.  

3.2. The integrals of motion 

We now point out that by virtue of (3.6) So(A) is independent of time: dSoc 

are arbitrary 

,/dt = 0. (We 
consider the case of two independent variables x and t.) Hence SOcA,(A) is a generating 
functional of the integrals of motion for equation (3.5). Expanding In SocA)(A) in a series 
on A - '  in the usual way 

we obtain the infinite series of the integrals of motion 

N 

The explicit expressions for C'"' in terms of P"(x, t )  can be found by standard procedure 
(for n = 1 see e.g. Zakharov et a1 (1980)). Let us represent the fundamental matrix 
solution F"(x, t, A )  as follows: 

CO 

F+(x,  t, A )  = R(x,  t, A)E(x, A )  exp( dy X ( Y ,  f ,  A ) )  (3.9) 

where E = exp(X;,, A a A ( a ) ~ ) ,  x ~ ( ~ )  = ,y and the matrix R satisfies the condition 



Polynomial spectral problem of arbitrary order 

= 1. From (3.9) we have 

To obtain (3.10) the subalgebra &(A) must be an Abelian. 
Substituting (3.9) into (1.1) we obtain 

aR 
-- f A " [ A ' " ) , R ] - R , y -  f A"P&A)R=O. 
ax  a = O  

Let us expand x and R in the asymptotic series in A- '  
CO 

X(X, t, A )  = A - e ~ ( e ) ( ~ ,  t ) ,  
e = O  

m 

R ( x ,  t, A )  = 1 + A-eR(e)(x,  t ) .  
e = l  

3133 

(3.10) 

(3.11) 

(3.12) 

Substituting these expansions into (3.1 1) and taking O(A) and F ( A )  projections of the 
relation obtained we get 

n 

a = O  
x'"' = - 2 (Pg)A, (x, t )R(e+a)(X,  t))O(A) 

where the R ( e )  are determined by the following recursion relations 

e = 1 , 2 , .  . . (3.13) 

P$)A) = 0, 
[A'"), R( ' ) ]  = -p("-l) 

F ( A )  7 

(3.14) 

n 

- 2 ( P $ ~ , R ' ~ + * )  ) F ( A )  = 0 ( e = 1 , 2  , . . . ,  ). 
a = O  

Formula (3.13) and (3.14) enable us to calculate all integrals of motion by 
recursion since due to (3.8) (3.10) and (3.12) 

+a 

C ( e )  = dx ~ ( ~ ) ( x ,  t )  ( e  = 1, 2, . . . ,). (3.15) 

Let us point out that for selfconsistency of the proposed procedure it is necessary 
that P$)A) = 0. Since det S = 1 we have Tr C'"' = 0 ( I  = 1 , 2 ,  . . . , ). So there are N - 1 
independent infinite series of the integrals of motion. 

We emphasise that these integrals of motion C'" ( e  = 1,2,  . . . , ) are universal, i.e. 
they are integrals of motion for any equations of the type (3.5) (with any functions 
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t ) ) .  Indeed in the construction of the C'" we use only the fact that So(A)(A) is 
independent of time and the spectral problem (1.1) but not of the form of the functions 
ni(A, t ) .  

3.3. Backlund, and generalised Backlund transformations 

The general structure of the transformations admissible by the integrable equations 
(3.5) are in essence the same as for n = 1. (See Konopelchenko 1980a-d.) The group of 
transformations (2.21), (2.3) with C = B  is the universal symmetry group for the 
equation (3.5). Indeed these transformations change neither SocA)(A) nor, therefore, 
the Hamiltonians of equations (3.5). The integrals of motion are connected with 
these symmetry transformations. Further, the transformations (2.21) (2.3) with C # B 
and B,, C, independent of time t are Backlund transformations (BT'S) for the equations 
(3.5). The general structure of BT'S are the same as in the case when N = 2, n = 1. 
(Konopelchenko 1979, 1980d): among them are discrete and continuous BT'S. Then, 
transformations (2.21) with functions BL(A, t )  which depend on time t are generalised 
BT'S. They convert the solutions of different equations of type (3.5) (with different 
functions n,(A, t ) )  into each other. In particular, transformation (3.3) is the generalised 
BT from the equation (L&))"(dP'"'/dt) = 0 to the equation (3.5) (B, = 
exp(-i J 'dS R,(A, s))). 

Thus, the universal group of the transformations (2.21) contains all the trans- 
formations characteristic of the integrable equations (3.5) (symmetry group, Backlund 
transformations) and these equations themselves. 

4. First example: the linear bundle 

Formulae (2.21) and (3.5) give us the general form of the transformations and 
integrable equations for the arbitrary polynomial bundle (1.1). The operators A&) and 
L&) play a central role in these formulae. In order to give an explicit description of the 
integrable equations and BT'S we needed the explicit expressions for A&) and L&). The 
construction of the explicit expressions for A;,, L;) is the main problem. 

Here we consider two examples in which one can find operators A+(L+) explicitly. 
For the linear bundle (Konopelchenko 1980a, b, c) N is arbitrary, n = 1, A(') = 0, 

PgiA) = 0, A") = iA, = iP, i.e. 

++ 
In this case equation (2.15) is of the form (A - A A )  4 F!2; = 0 where AA is an operator 



Polynomial spectral problem of arbitrary order 3135 

df 
where [A, a d i l + ]  = 4. The transformation (2.21) is the following 

where 

Results analogous to (4.2)-(4.6) have been obtained also in the cases where A is an 
arbitrary semi-simple matrix (Konopelchenko 1980b, c) and where elements of P(x, t )  
belong to the infinite-dimensional abelian Z2 graded algebra, i.e. among elements of 
P(x, t )  there are the usual (commutative) functions and anticommutative (Grassmann) 
variables (classical fermion field, see Konopelchenko (1980e)). 

5. Second example: quadratic bundle of arbitrary order 

We consider the quadratic ( n  = 2) bundle (1.1) with arbitrary N, A(’) = iaA, A(” = 
2iPA, A(’)= 0, Pg)Aj = 0, P& = h P ,  PgjA) = ipP  where a and P are arbitrary 
numbers, i.e. 

a$/ax = i (ah2 + 2pA)A$ + i ( d  + p)P(x, t)$. (5.1) 

Let us consider two cases: 

where I ,  is the identity matrix of the order N. The subalgebra go(A)(= 
{g, g E gl(N, C), [g, A]  = 0) consists of the matrices of the order N + 1 of the type (a :), where p” is an arbitrary N x N matrix and b is an arbitrary number. 
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where Q and R are N X N matrices. In this case the subalgebra &(A) consists of 

matrices of the type (: :) where p1 and p 2  are arbitrary N X N matrices. 

For N = 1 (5.2) coincides with (5.3) and the corresponding spectral problem (5.1) 
coincides with those considered by Wadati et ul (1979) (for /3 = 0 see Kaup and Newell 
(1 978)). 

Let us now describe explicitly both the general form of the equations integrable by 
(5.1) and their Backlund transformations. 

For arbitrary N in both of the cases (5.2) and (5.3) [ P ( x ) ,  &+&(A) = 0. As a result 

equation (2.13) is of the form (we denote x = $ F(A)): 
df ++ F ( A ~  

One can rewrite equation (5.4) as follows   ad,'^ =;AX) 

-$iA(ax/dx)+ip’Jx = ( ah2+2ph) ( l  - i a J ) X  

where 

Therefore 

= 00 (ia)‘J‘[-- i d  -+ip’~] .  
e = 0  2 dx 

(5.5) 

So, for the quadratic polynomial (2.14) we have f ( h )  = a h  + 2ph - A .  The ‘roots’ 
A(l)  and are easily found 
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where the operator 21'2 is defined as 21i221'2 = 2. 
Similarly 

where 

--A--+ip2J') i d  f (icy)e(J+)E 

= (  2 dx e - 0  

(5.10) 

(5.11) 

(5.12) 

(5.13) 

where the matrices ( i  = 1, . . . , N 2  + 1 for case (5 .2) ;  i = 1, . . . , 2 N 2  for case (5.3)) 
form a basis for the subalgebra &(A). Since A &  = --A;) - 2 P / a  the system of equation 
(5.13) is consistent if the functions & ( A ,  t )  satisfy the conditions &(-A - 2p/cy, t )  = 
&(A, t )  (i = 1 , 2 ,  . . . ). As a result @ ( A ,  t )  = f i i ( a h 2 + 2 p h ,  t )  where f i , (p, t) are arbi- 
trary functions entire on p = cyh2+2ph. By virtue of ( ~ ( A 6 ) ) ~ + 2 p A & )  = A+, (5.13) in 
this case is equivalent to the equation 

where the operator A' is given by (5.11). 
Correspondingly, the system of the equations (3.5) is consistent unchanged if 

f l , ( - A  - (2p/cy), t )  =ai(& t )  (i.e. l l i ( A ,  t )  = hi(cyh2+2ph, t ) )  and it is equivalent to the 
equation 

df 
where L' = A'(P = P )  = cy(L&))'+ 2pL&),  i.e. 

(5.15) 

(5.16) 
i d  

L'= --A-+@ i 2 dx 
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(5.17) 

It is easy to see that at a = 0, p = 1 the transformations (5.14), equations (5.15) and 
operators A+, Lt coincide with those for the linear bundle (§ 4). 

The class of equations (5.15) contains the subclass of equations for which 
C , = l  &(A,  t )H(A)L = R(A, t ) A  where R(h, t )  is an arbitrary function meromorphic on A. 
These equations are of the form 

(5.18) 

For equations (5.15) and (5.18) and transformations (5.14) all the general properties 

Let us consider some particular cases of equations (5.18). 
At N = 1 we have ( I+) '= 0 and therefore 

dP/dt - 2iR(Lt,  t ) A P  = 0. 

considered in Q 3 are of course valid. 

(5.19) 

Under an additional restriction p = 0, equations (5.18) for N = 1 are equivalent to 
the equations considered by Gerdjikov et a1 (1980)i. Among these equations there is 
the derivative nonlinear Schrodinger (DNLS) equation (R = -2A2, r = q*, cy is an 
arbitrary real number): 

(5.20) 

first considered by Kaup and Newel1 (1978). 

particular, the combined NLS equation (0 = -2A2, p is real): 
For arbitrary p and N = 1 we have a class of equations (5.18) containing, in 

a4 a24 . a  i - + F +  2p2(qI2q -ia-(lq/2q) = o 
at ax ax 

(5.21) 

which was introduced by Wadati et a1 (1979). 
For arbitrary N,  a and /3 and under the reduction (5.2), equations (5.18) are 

multicomponent generalisations of the equations for N = l$ .  In particular for R = 
-2A2 equation (5.18) is 

Under the reduction rs = 4: ( a  and /3 are real numbers) we obtain the multi- 
component, combined NLS equation 

t Let us point out that (5.18) (for N = 1, 
described by Gerdjikov er al (1980). 
$ For explicit calculations, the relations I'AP = 0, (I ' )2(aP/ax)  = 0 are useful. 

= 0) is a more convenient and simpler form of the equations 



Polynomial spectral problem of arbitrary order 3139 

which possesses SU(N) symmetry. At N = 2  and p = O  equation (5.23) has been 
considered by Morris and Dodd (1979). 

For the reduction (5.3) and arbitrary N the equations (5.18) are matrix generalisa- 
tions of the equations with N = 1. In particular at R = -2A2 we have the system of 
matrix equations 

(5.24) 

where Q and R are N x N matrices. For real a and p, equations (5.24) permit the 
reduction R = Q+, where + denotes Hermitian conjugation, and as a result we obtain 
the matrix combined NLS equation 

a Q  d 2 Q  a 
at ax ax 

i - + ~ + 2 p 2 Q Q t Q - i a - ( Q Q ’ Q ) = 0  (5.25) 

For n(A) = 4A and arbitrary N we have the multicomponent and matrix combined 
modified Korteweg-de Vries equations. 

All the equations (5.18) (and in particular equations (5.21)-(5.25)) are Hamiltonian 
ones and possess an infinite set of Hamiltonian structures. Namely, one can show that 
the equations (5.18) can be represented in the Hamiltonian form dP/at = {P, Xn}n  with 
Poisson brackets 

(5.26) 

where D = a/ax + P’[P(x) ,  jzm dy[P(y), ‘]O(A)], the operator L+ is given by formula 
(5.16) and n is any whole number. Equations (5.18) and their properties will be 
considered in further detail in a separate paper. 

In the same manner one can also consider the quadratic bundle (5.1) under a more 
general reduction than (5.2) or (5.3), namely for 

(5.27) 

where I N ( I M )  is the identical quadratic matrix of order N ( M ) ,  O,(O,) is the zero 
quadratic matrix of order N ( M ) .  The matrices 0 and R are correspondingly N X M 
and M x N rectangular matrices. N and M are arbitrary numbers. In the particular 
cases M = 1 and M = N we have the corresponding reductions (5.2) and (5.3). In the 

case (5.27) the subalgebra consists of matrices of type (: i) where PI is an 

arbitrary quadratic matrix of order N and P2 is an arbitrary quadratic matrix of order M. 
Since in this case [P, &+&(A) = 0 then all the formulae (5.4)-(5.18) are valid for the 
reduction (5.27) toot.  In particular for R = -2A2, equation (5.18) gives the following 

(5.28) 

t For properties of the rectangular matrices see e.g. Gantmakher (1967). 
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where Q and R are correspondingly N x M and M x N rectangular matrices. For real 
a, p and R = Q' we have 

(5.29) 

For M = 1 and M = N equations (5.28) and (5.29) reduce correspondingly to  equations 
(5.22)-( 5.23) and to equations (5.24)-(5.25). 

All the equations (5.18) corresponding to the reduction (5.27) (for any N and M )  
are Hamiltonian ones and possess an infinite family of Poisson brackets (5.26). 

6. Polynomial and rational bundles as degenerate linear bundles 

It is not difficult to see that, introducing the quantities +e = A*+, the polynomial spectral 
problem (1.1) can be represented in the following form? (assuming 

df 

= 0) 

0 0 . . .  

. (6.1) 

. . . . . . . . . . . . . . . .  
. . .  

0 0 . . .  1 0 I . . .  -1 (CIN- 

Therefore the polynomial bundle (1.1) is no more than the special reduction of the 
degenerate linear bundle 

where det B = 0. 
It is easy to see that the arbitrary rational bundle (Zakharov 1980) 

can also be represented in the form of (6.2). 
The polynomial (6.1) and rational (6.3) bundles are irreducible forms of the 

degenerate linear bundles. In particular (1.1) is the irreducible form of (6. I). In the 
case det B # 0 the spectral problem (6.2) is reduced to (4.1). 

So the analysis of the polynomial and general rational bundles is equivalent 
to the analysis of the degenerate linear bundle (6.2) under the special reductions. 

t The author is grateiul to Dr P P Kulish for a stimulating discussion of this point. 
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Furthermore, the degenerate bundle (6.2) allows a natural multi-dimensional generali- 
sation 

where Bi are matrices and xl, , , . , x, are independent variables (Zakharov and Shabat 
1979). For these reasons, the generalisation of the AKNS method to the degenerate 
linear bundle (6.2) would appear to be very useful. 
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